Subject Year 8: Particle Model (Physics)

Assessment Opportunities		Literacy/Reading opportunities	CEIAG Links
•	Regular low stakes quizzing of AO1- self marked.	Reciprocal reading: Why do ships float?	Spotlight on careers: Physicist
•	In class past paper questions where – self / peer marked	Key vocab is highlighted in the SOL	Other careers: • Mechanical engineer
•	Extended writing is teacher marked with personalised feedback provided. End of unit assessment self & teacher marked with collective feedback provided.		 Aerospace engineer Biomechanical engineer Sports scientist Astronomer

Curriculum vision:

"Our aim is to deliver a curriculum that is inclusive, relevant and progressive for all learners."

RESPECT

AMBITION

RESILIENCE

Big Picture: Gaining understanding of pressure, density and particle behaviour is fundamental as it provides crucial insight into how the physical world operates. This topic is covered broadly in Key Stage 3 and Key Stage 4 across both Chemistry and Physics. This topic is important as it allows students to understand how pressure varies in different environments, how density can affect buoyancy, and how particles behave in different states of matter and the transition between these.

Lesson sequence		Learning outcomes / Key knowledge (including NC KS3) Interleave / review SEND scaffold		Skills development: Reading / writing / data / numeracy / graph work	
1.	TBAT: Explain how pressure changes in liquids.	 Definition of pressure and its units (Pascal, Pa). Describe hydrostatic pressure and the relationship between pressure and depth. Difference between pressure in liquids and gases. States of matter Arrangement of particles Visual aids and demonstrations Use of analogies Sentence starters and word banks 	0	Explain how pressure changes with depth in liquids. Draw diagrams illustrating pressure at different depths. Predict the outcome of changing depth on pressure.	NC pg 10-14 here Boost Book 2 Page 111-124
2.	TBAT: Describe how pressure changes in the atmosphere.	 Definition of atmospheric pressure. Explain the relationship between altitude and atmospheric pressure. How pressure differences affect weather patterns How atmospheric pressure is measured. Visual aids and demonstrations Interactive simulations Sentence starters and word banks 	0	Describe how atmospheric pressure changes with altitude. Explain how atmospheric pressure is measured. Suggest why atmospheric pressure decreases with altitude.	NC pg 10-14 here Boost Book 2 Page 111-124
3.	TBAT: Calculate pressure acting on different objects.	 Use the correct formula to calculate pressure (Pressure = Force/Area) Use correct units for Force (Newtons, N) Use correct units for Area (metres², m²) Convert between units with different prefixes (kilo, milli) 	0	Calculate pressure using given force and area.	NC pg 10-14 <u>here</u>

		 Forces Balanced and unbalanced forces Worked examples 	0	Justify calculations using clear working out. Compare pressure in different scenarios based on varying forces and areas.	Boost Book 2 Page 111-124
4.	TBAT : Engage with a scientific article.	 Use a scientific article to investigate why ships are able to float using knowledge about pressure in liquids. Use an article to answer questions and apply knowledge about pressure in fluids. Reading rulers, tracking as teacher reads Larger text chunked as needed Modelling highlighting and annotation of text 	0	Reciprocal reading: Why do ships float?	NC pg 10-14 here Boost Book 2 Page 111-124
5.	TBAT: Describe and calculate the density of different objects.	 Definition for density of a material. Use of the appropriate equation to calculate density. Use appropriate units for density (kg/m³ or g/cm³) How to measure the mass and volume of objects. Examples of high- and low-density materials States of matter Arrangement of particles Visual aids and demonstrations Use of analogies Sentence starters and word banks 	0	Describe density and how it is measured. Calculate density using mass and volume data. Compare densities of different materials.	NC pg 10-14 here Boost Book 3 Page 161-173
6.	TBAT: Investigate the density of regular and irregular objects.	 Definition for density of a material. Use of the appropriate equation to calculate density. Use appropriate units for density (kg/m³ or g/cm³) How to measure the mass and volume of objects. Examples of high- and low-density materials Select appropriate equipment for given investigation. 	Writin instruct carry of the de irregul	ig: Write a set of ctions detailing how to out an investigation into ensity of regular and lar objects.	NC pg 10-14 <u>here</u> Boost Book 3

	 Lab safety Visual aids and demonstrations Sentence starters and word bas Premade results table and grap 	s nks phical axes		Page 161-173
7. TBAT: Use the particle model to explain changes in state.	 Describe and explain the particle mode Describe all changes in state in terms of transferred. Internal energy store Visual aids and demonstrations Use of analogies Sentence starters and word back 	el of matter. of the particle model and energy	 Explain how the particle model accounts for changes in state. Sketch diagrams of particles in different states of matter. Evaluate the energy changes involved in state transitions. 	NC pg 10-14 here Boost Book 3 Page 161-173
8. TBAT: Describe how heating and cooling affects the density of materials.	 Describe the effect of temperature on p Relationship between temperature cha Give real-life examples of thermal expa Describe how internal energy changes Pressure Density calculations and descritions Hands on with equipment Sentence starters and word base 	particle motion and spacing. anges and density. ansion and contraction. with temperature, ptions	 Describe how heating and cooling affect density. Explain the underlying particle behaviour when materials are heated or cooled. Suggest practical applications of thermal expansion and contraction. 	NC pg 10-14 <u>here</u> Boost Book 3 Page 161-173
Vocab		Links to previous learning / interleaving	Assessment & homework	

L3 Vocab Pascal Hydraulic Barometer Atmospheric pressure Anomaly	L2 Vocab Pressure Density Altitude Volume Mass Energy Temperature Liquid Solid Gas State Change Expand Contract	Command words focus Label Plot Measure Predict Identify Estimate Observe Justify Evaluate Compare construct	 KS2 Contact and non-contact forces Friction Air and water resistance Gravity Working Scientifically Asking questions Using scientific apparatus Presenting data Fair tests Predictions and conclusions Variables Accuracy and precision 	 Regular low stakes quizzing of AO1 In class assessment of AO1, AO2, AO3 using past paper questions where appropriate Written word is assessed with personalised feedback provided. End of unit assessment marked with collective feedback provided. Homework is set weekly and is outlined in the half-termly homework booklet. Homework includes online quizzes on Carousel Learning of content for in-class quizzes Completion of written questions.
Independent learning BBC Bitesize – Solids, Liquids a BBC Bitesize – Changes of stat BBC Bitesize - Pressure Videos Particle Model and States of Ma Changing State Pressure in Liquids Pressure in Solids	and Gases e atter			 Misconceptions / common errors Pressure is the same at all depths in a liquid. Atmospheric pressure is constant regardless of altitude. Pressure only exists in liquids. Density and weight are the same. All objects with the same volume have the same density. Particles in solids do not move at all. Heating always causes expansion and cooling always causes contraction. Particles change size during state transitions. The density of a material does not change with temperature. Internal energy is only related to temperature.

