

Curriculum vision:

“Our aim is to deliver a curriculum that is inclusive, relevant and progressive for all learners.”

Computing

GCSE Computer Science – Programming language and IDE

Assessment Opportunities

Within every half term, there will be a

minimum of 2 low stakes quizzes. These

will be automatically marked out of 20.

There will also be a end of unit test which

will be based on past exam questions.

These questions are then marked and gone

through as a class.

Literacy/Reading opportunities

Integrated development environments -
Programming languages and Integrated

Development Environments - OCR - GCSE
Computer Science Revision - OCR - BBC Bitesize

High level languages - Programming languages

and Integrated Development Environments - OCR
- GCSE Computer Science Revision - OCR - BBC

Bitesize

Integrated Development Environments -
Computer Science: OCR GCSE

(senecalearning.com)

CEIAG Links

• Penetration tester

• Application analyst
• Applications developer

• Cyber security analyst
• Data analyst

• Forensic computer analyst
• IT trainer

• Machine learning engineer

https://www.bbc.co.uk/bitesize/guides/z6x26yc/revision/6
https://www.bbc.co.uk/bitesize/guides/z6x26yc/revision/6
https://www.bbc.co.uk/bitesize/guides/z6x26yc/revision/6
https://www.bbc.co.uk/bitesize/guides/z6x26yc/revision/6
https://www.bbc.co.uk/bitesize/guides/z6x26yc/revision/1
https://www.bbc.co.uk/bitesize/guides/z6x26yc/revision/1
https://www.bbc.co.uk/bitesize/guides/z6x26yc/revision/1
https://www.bbc.co.uk/bitesize/guides/z6x26yc/revision/1
https://senecalearning.com/en-GB/revision-notes/gcse/computer-science/ocr/2-5-3-integrated-development-environments
https://senecalearning.com/en-GB/revision-notes/gcse/computer-science/ocr/2-5-3-integrated-development-environments
https://senecalearning.com/en-GB/revision-notes/gcse/computer-science/ocr/2-5-3-integrated-development-environments
https://www.prospects.ac.uk/job-profiles/penetration-tester
https://www.prospects.ac.uk/job-profiles/application-analyst
https://www.prospects.ac.uk/job-profiles/applications-developer
https://www.prospects.ac.uk/job-profiles/cyber-security-analyst
https://www.prospects.ac.uk/job-profiles/data-analyst
https://www.prospects.ac.uk/job-profiles/forensic-computer-analyst
https://www.prospects.ac.uk/job-profiles/it-trainer
https://www.prospects.ac.uk/job-profiles/machine-learning-engineer

GCSE Computer Science
The Academy of St Nicholas

Version 1 1 © OCR 2020

Keywords

Why is this relevant for the students?

• Students to produce a graphic organiser (as a circle)

split down the middle. The left side to fill with how code
needs to be written for a Computer to understand. The
right side to fill with points on how code needs to be
written to make it easier to write for the programmer.

This would set the big picture of the first lesson looking at
the different generations of programming languages and
the need for translators.

Notes: Use Context Setting task to engage students and
create discussion.
May link to flipped resources if you use flipped learning.

What am I looking for to show
progress?

Expected progress
• Students can match sample pieces

of code to low-/high-level
languages.

• Translators can be matched to
different generations of languages.

Good progress
• Students can accurately describe

the differences between low-level
and high-level languages.

Exceptional progress
• Advantages and disadvantages of

programming in low-level and high-
level languages can be evaluated.

Topic 2.5 Programming languages and Integrated Development Environments –

Lesson 1

The sticking points Assessment for Learning

Objectives The big picture

What should the students be confident/able to do at
the end of the session?

• To be able to describe the different generations of
programming language.

• To be able to describe the differences between low-level
and high-level languages.

• To evaluate the benefits of programming in both low- and
high-level languages.

• To state which translator is needed for each and why.

Notes: These are the core learning that the students should
develop during the lesson. This will link to the activities that

provide ability to assess the Objectives.

Engagement

What will make the students want to learn?

• Students given a section of Machine Code (pure

Binary) – First Generation Programming. They

have to spot the error in the code. What are the

issues for the programmer?

• Thinking of a programming language that you

are familiar with, what are all the pros of using

this language as a programmer?

Notes: A short activity that stimulates the students.
Ideas taken from big picture activity could be used.

What do I want students to remember?

• First generation is Machine Code/Language – no translator is needed. It can
be directly executed by the processor. It is however tedious to code and
difficult to spot errors.

• Second generation is Assembly Language – a translator is needed to translate
the language into Machine Code. Assembly language uses Mnemonics – it is
easier to de-bug than first generation and faster to program than first.

• First and second generation Languages are low-level languages.

• Low-level languages are difficult to de-bug, difficult for anybody to understand
the code, difficult to maintain, require lots of instructions to perform a specific
task. They are useful for directly addressing hardware and for fast execution of
a program. Suitable for Device Drivers.

• High-level languages are easier to understand (for the programmer), easier to
de-bug, faster to write. They use English like key-words. One instruction in a
high-level language would translate to many in a low-level language.

• Third generation languages include Pascal, VB, C#, Python.

• Third generation is high-level.

• Third generation requires Compiler to translate code.

Notes: A list of concepts that you want the students to remember by the end of
the lesson.

What exam/ specification specific words
should the students be confident with and
need to know?
• Low-level language

• High-level language

• First generation
Language

• Language Translator

• Machine Code

• Assembly Language

• Second
Generation
Language

• Third generation
Language

• Compiler

• Interpreter

• Device Driver

• Debug

Multiple Choice Questions will assess these
keywords; use the MCQs supplied.

GCSE (9–1) Computer Science 5 Minute Lesson Plan

Version 1 2 © OCR 2020

Summary/Plenary

Notes

D
if

fe
re

n
ti

a
ti

o
n

How will I enable access to each area of learning?

• Some students will have more experience than others on using a variety of languages. In discussions on the pros
and cons as a programmer in programming in different languages, students with wider experience should use
examples beyond classroom taught programming.

• Link to tasks using the Little Man Computer (LMC): more able students will be able to give examples of code in
Assembly Language and the equivalent code in a high-level language to model the idea of one instruction to many
machine code instructions.

• First-hand experience at programming in both low-level and high-level languages will enable advantages and
disadvantages to be seen more clearly.

Notes: Use of stretch task ideas supplied may support high end differentiation.

You will need to modify the resources to meet the needs of your students specifically. You may wish to refer to
Departmental or School policies on differentiation methods used within your centre.

A
c

ti
v

it
y

 1

What tasks will I ask the students to complete to develop their understanding during the lesson?

• Match activity to link together examples of code from different types of languages along with the translators needed.

Notes: Use the Activities given to develop the students’ knowledge of the topic. Each activity may need further
differentiation/adaptation for your needs.

Reference the Common misconceptions/FAQ guide to support your delivery of the topic.

A
c

ti
v

it
y

 2

What tasks will I ask the students to complete to develop their understanding during the lesson?

• Use a graphics organiser to identify the advantages and disadvantages of programming using each generation of
language, their uses and the translator required.

• Could use mandala Graphic Organiser (concentric circles split into thirds – inner circle to have generation, second
circle Translator, third circle advantages/disadvantages).

Reference the Common misconceptions/FAQ guide to support your delivery of the topic.

How will I check that students have retained the
knowledge?

• Pause-Pounce-Bounce method of questioning to
ensure all students listen to each other’s answers:

• Give an example of a generation of a language.

• Which translator is used?

• What would the code look like for that generation?

• Give an advantage? Why? Give a disadvantage.

• Why would a programmer prefer writing in a high-level
language?

• What are the benefits of programming in a low-level
language?

• All students to write three translators on a mini-
whiteboard and link with generation – holding these up.

Notes: Use the MCQs to check basic understanding of
Keywords and Topics.

Use the level of response (LOR) to develop deeper
knowledge and allow Peer Assessment and Review. This
can be developed to use the LOR ideas as homework etc.

A
c

ti
v

it
y

 3

What tasks will I ask the students to complete to develop their understanding during the lesson?

• Translation task from a pictorial language into English (literal translation in pictures) or a made up language into
English.

• How is this like generations being translated from one language to another?

• Could give students one line of high-level language they are familiar with and translate to assembly language (LMC)
and for the more able into machine code (Binary).

GCSE (9–1) Computer Science 5 Minute Lesson Plan

Version 1 3 © OCR 2020

Keywords

Why is this relevant for the students?

Graphic Organiser for students to complete to weigh up
the differences between high-level and low-level
languages.

Notes: Use Context Setting task to engage students and
create discussion.
May link to flipped resources if you use flipped learning.

What am I looking for to show progress?

Expected progress

• To be able to identify which language translators are
used for which generations of languages.

• To match up given features with either compiler or
interpreter

Expected progress: This is likely to be activities and
Learning tasks that meet your expectations for the class
progress towards the objectives.

Good progress

• To be able to describe key features of Interpreters and
Compilers.

• To be able to describe the importance of an IDE when
producing programming source code.

Good progress: This would show a development from
basic understanding and be indicative that some students
use stretch and challenge material during the lesson.

Exceptional progress
• To be able to evaluate the reasons why a programmer

would make use of all three language translators
during the development of software.

Exceptional progress: This would indicate the level of
progress if all extension activities have been completed
and at 8/9 levels of understanding.

Topic 2.5 Programming languages and Integrated Development Environments – Lesson 2

The sticking points Assessment for Learning

Objectives The big picture

What should the students be confident/able to
do at the end of the session?

• To be able to describe the differences in operation
between a Compiler and Interpreter.

Notes: These are the core learning that the students
should develop during the lesson. This will link to the
activities that provide ability to assess the Objectives.

Engagement

What will make the students want to learn?

• Based on starter/flipped learning students to put one
key point that they know about the topic on a post-it-
note and one point that they feel they ‘want to know’.

This can be used to check starting point and be used in
plenary to check did students learn what they wanted to.

Notes: A short activity that stimulates the students. Ideas
taken from big picture activity could be used.

What do I want learners to remember?

• Compiler/Interpreter are used for third generation
languages (high-level).

• Compiler converts high-level source code into Machine
code.

• Compiler translates and converts entire source code all
in one go.

• Compiler produces an error report and an executable
file (Object code).

• Interpreter doesn’t produce object code.

• Interpreter translates and executes lines of code
statement by statement.

• Interpreter stops when it encounters an error.

• Interpreter is used during de-bugging stages and
development.

• Compiler is used when program is ready for being
shipped.

• Compiled code is optimised.

• Compiled code does not include the source code.

Notes: A list of concepts that you want the students to
remember by the end of the lesson.

What exam/specification specific words should
the students be confident with and need to
know?

• Compiler

• Interpreter

• Source Code

• Object Code (Executable Code)

• De-bug

• Translator

• IDE

Multiple Choice Questions will assess these keywords;
use the MCQs supplied.

You may wish to customise these as needed.

GCSE (9–1) Computer Science 5 Minute Lesson Plan

Version 1 4 © OCR 2020

Summary/Plenary

Homework/flipped learning

D
if

fe
re

n
ti

a
ti

o
n

How will I enable access to each area of learning?

• Producing a graphical representation of Compiler/Interpreter could be differentiated by having a different word limit
for differing ability students.

• Differentiation by questioning.

• Differing ability students can be given a series of key points to include in their homework.

Notes: Use of Stretch Task Ideas supplied may support high end differentiation.

You will need to modify the resources to meet the needs of your students specifically. You may wish to refer to
Departmental or School policies on differentiation methods used within your centre.

A
c

ti
v

it
y

 1

What tasks will I ask the students to complete to develop their understanding during the lesson?

• Similarities and differences between high- and low-level languages.

• Differences between the two types of translator.

• Could give students one line of high-level language they are familiar with and translate to assembly language (LMC)
and for the more able into machine code (Binary).

Notes: Use the Activities given to develop the students’ knowledge of the topic. Each activity may need further
differentiation/adaptation for your needs.

A
c

ti
v

it
y

 2

What tasks will I ask the students to complete to develop their understanding during the lesson?

Students given a description of either an Interpreter or a Compiler. Using minimal amount of words, the students should
draw a graphical representation of the text that they have been given.

Students then pair up and using their picture only – explain to their partner how Compiler/Interpreter works. Partner
then relays back to the student the notes they have gathered, and this is compared to the original text.

Notes: Use the Activities given to develop students’ knowledge of the topic. Each activity may need further
differentiation/adaptation for your needs.

How will I check that students have retained the
knowledge?

A series of multiple choice questions given based on the
MCQs – students use mini-whiteboards to answer/vote.

Homework to produce a short report describing the
differences between the language translators, how these
apply to generations of languages and where each would
be used. (This could be marked as a LOR question.)

Notes: Use the MCQs to check basic understanding of

Keywords and Topics.

Use the LOR to develop deeper knowledge and allow Peer
Assessment and Review. This can be developed to use

the LOR ideas as homework etc.

A
c

ti
v

it
y

 2

What tasks will I ask the students to complete to develop their understanding during the lesson?

Students given the table to complete.
Students write a summarised description for compiler and interpreter.
Differentiated students can have a table with hints.
Discuss students’ findings and address any misconceptions that may have arisen.

Notes: Use the Activities given to develop students’ knowledge of the topic. Each activity may need further
differentiation/adaptation for your needs.

GCSE (9–1) Computer Science 5 Minute Lesson Plan

Version 1 5 © OCR 2020

Keywords

Why is this relevant for the students?

Graphic Organiser for students to complete to
weigh up the features of IDEs and why
programmers would want these features

Notes: Use Context Setting task to engage
students and create discussion.

May link to flipped resources if you use flipped
learning.

What am I looking for to show progress?

Expected progress

• To be able to identify features of an IDE.

Expected progress: This is likely to be activities and
Learning tasks that meet your expectations for the class
progress towards the objectives.

Good progress

• To be able to describe the importance of an IDE when
producing programming source code.

Good progress: This would show a development from
basic understanding and be indicative that some students
use stretch and challenge material during the lesson.

Exceptional progress

• To be able to evaluate the reasons why a programmer
would make use of IDEs and have experience of more
than one IDE.

Exceptional progress: This would indicate the level of
progress if all extension activities have been completed and
at 8/9 levels of understanding.

Topic 2.5 Programming languages and Integrated Development Environments – Lesson 3

The sticking points Assessment for Learning

Objectives The big picture

What should the students be confident/able to
do at the end of the session?

• To be able to describe the common tools and
facilities in an Integrated Development
Environment (IDE).

Notes: These are the core learning that the
students should develop during the lesson. This will
link to the activities that provide ability to assess
the Objectives.

Engagement

What will make the students want to learn?

• Based on starter/flipped learning, students to
put one key point that they know about the topic
on a sticky note and one point that they feel
they ‘want to know’.

• This can be used to check starting point and be
used in plenary to check did students learn what
they wanted to.

Notes: A short activity that stimulates the students.
Ideas taken from big picture activity could be used.

What do I want students to remember?

• IDE contains code editor, error
diagnostics, run-time environment and
has built in translators.

• Features available to programmers to
help with human error and speed the
programming process.

A list of concepts that you want students
to remember by the end of the lesson.

What exam/specification specific words should
the students be confident with and need to
know?

• Compiler

• Interpreter

• Source Code

• Object Code (Executable Code)

• De-bug

• Translator

• IDE

Multiple Choice Questions will assess these
keywords; use the MCQs supplied.

You may wish to customise these as needed.

GCSE (9–1) Computer Science 5 Minute Lesson Plan

Version 1 6 © OCR 2020

Summary/Plenary

Homework/flipped learning

D
if

fe
re

n
ti

a
ti

o
n

How will I enable access to each area of learning?

• Producing a graphical representation of the IDE could be differentiated by having a keywords available for differing
ability students.

• Differentiation by questioning.

• Differing ability students can be given a series of key points to include in their homework.

Notes: Use of stretch task ideas supplied may support high end differentiation.

You will need to modify the resources to meet the needs of your students specifically. You may wish to refer to
Departmental or School policies on differentiation methods used within your centre.

A
c

ti
v

it
y

 1

What tasks will I ask the students to complete to develop their understanding during the lesson?

Students are to find common features for an IDE one half of the circle for the feature on the other side why a
programmer many want/need this to program.

Students then pair up and using their picture only – explain to their partner the features and reason why. Partner then
re-lays back to the student the notes they have gathered, and this is compared to the rest of the class.

Notes: Use the Activities given to develop the students’ knowledge of the topic. Each activity may need further
differentiation/adaptation for your needs.

Reference the Common misconceptions/FAQ guide to support your delivery of the topic.

How will I check that students have retained the
knowledge?

A series of multiple choice questions given based on the
MCQs – students use mini-whiteboards to answer/vote.

Homework: Research as many different IDEs as you can
find, compare their features, make a table to illustrate their
differences. Could be used as a LOR.

Notes: Use the MCQs to check basic understanding of
Keywords and Topics.

Use the LOR to develop deeper knowledge and allow Peer
Assessment and Review. This can be developed to use
the LOR ideas as homework etc.

A
c

ti
v

it
y

 2

What tasks will I ask the students to complete to develop their understanding during the lesson?

Students are given a picture of an IDE and they have to identify key features.
To differentiate students could have key words at the bottom to assist them.
Higher ability students could have a different IDE similarly lower ability students could have a simpler IDE (Pythons
default IDLE.
You could get students to compare VS IDE to Pythons default IDLE.

Notes: Use the Activities given to develop the students’ knowledge of the topic. Each activity may need further
differentiation/adaptation for your needs.
Reference the Common misconceptions/FAQ guide to support your delivery of the topic.

A
c

ti
v

it
y

 3

What tasks will I ask the students to complete to develop their understanding during the lesson?
To open up the programming language IDE that the students are familiar with and produce screen/shots set of notes
that identify where:
 - editor is located
 - error diagnostics can be found and used
 - run-time environment is found
 - example of using Compiler/Interpreter.
Notes: Use the Activities given to develop the students’ knowledge of the topic. Each activity may need further
differentiation/adaptation for your needs.
Reference the Common misconceptions/FAQ guide to support your delivery of the topic.

GCSE (9–1) Computer Science 5 Minute Lesson Plan

Version 1 7 © OCR 2020

Whether you already offer OCR qualifications, are new to OCR, or are considering switching from your current provider/awarding organisation, you can request more information by completing

the Expression of Interest form which can be found here: www.ocr.org.uk/expression-of-interest

Looking for a resource? There is now a quick and easy search tool to help find free resources for your qualification: www.ocr.org.uk/i-want-to/find-resources/

OCR Resources: the small print
OCR’s resources are provided to support the delivery of OCR qualifications, but in no way constitute an endorsed teaching method that is required by the Board, and the decision to use them lies with the individual teacher. Whilst every effort is made to ensure the accuracy of

the content, OCR cannot be held responsible for any errors or omissions within these resources.

Our documents are updated over time. Whilst every effort is made to check all documents, there may be contradictions between published support and the specification, therefore please use the information on the latest specification at all times. Where changes are made to

specifications these will be indicated within the document, there will be a new version number indicated, and a summary of the changes. If you do notice a discrepancy between the specification and a resource please contact us at:

resources.feedback@ocr.org.uk.

© OCR 2020 - This resource may be freely copied and distributed, as long as the OCR logo and this message remain intact and OCR is acknowledged as the originator of this work. OCR acknowledges the use of the following content: n/a

Please get in touch if you want to discuss the accessibility of resources we offer to support delivery of our qualifications: resources.feedback@ocr.org.uk

https://www.surveymonkey.co.uk/r/ZL5Z53B
http://www.ocr.org.uk/expression-of-interest
http://www.ocr.org.uk/i-want-to/find-resources/
http://www.ocr.org.uk/i-want-to/find-resources/
file://///filestorage/OCR/PD/ProdSup/Design/Studio/Visual%20Style%20Guidelines/2016_Templates/resources.feedback@ocr.org.uk
mailto:resources.feedback@ocr.org.uk

	SOL Front programming language and ide
	Programming languages and IDE

